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An expression has been derived for the Debye characteristic temperatures of disordered binary substitu- 
tional alloys in terms of the Debye characteristic temperatures of the component metals, concentration 
of the solute atom and an unknown parameter which can be found from the Debye characteristic 
temperature of the alloy at any particular concentration. Debye temperatures of polycrystalline speci- 
mens of copper, nickel and copper-nickel (20, 30, 40, 50, 60, 80 and 90 % nickel by weight) alloys 
have been determined by X-ray diffraction methods. Intensities of different reflexions have been 
measured with the help of a highly accurate counter-diffractometer technique and corrected for tem- 
perature diffuse scattering, diffuse scattering due to random distribution of guest atoms in host sites 
and difference in sizes of different atoms (in case of alloys only) and incorrect background. Debye 
temperatures have been plotted against concentration and the variation has been compared with 
theoretical predictions. Experimental results are found to agree satisfactorily with the predictions ob- 
tained during the present investigations. 

Introduct ion  

The effect of foreign atoms on lattice vibrations in 
crystals has attracted much recent attention. Since 
substitutional binary alloys form important examples 
of foreign atoms in the host lattice, such systems are 
good specimens of experimental verification of the 
theories. Although the knowledge of the frequency 
spectrum is the most useful one from which all thermo- 
dynamic properties of solids can be determined, its 
theoretical or experimental determination is fraught 
with great difficulties. The Debye temperature is an- 
other important parameter of lattice vibrations which 
can be more easily evaluated theoretically and sub- 
jected to experimental tests apart from its usefulness in 
different branches of solid state physics. 

The problem of finding an expression for the Debye 
temperature of a disordered solid solution in terms of 
the Debye temperatures of the component metals has 
been taken up by several workers. Although some of 
these authors have compared the predictions of their 
own theories with experimental results, a complete com- 
parative study of all these theories in the light of exper- 
imental results has not yet been undertaken. In the 
course of the present investigation an attempt has been 
made to achieve this with the help of X-ray diffraction 
studies of some copper-nickel alloys. It may be men- 
tioned that although the copper-nickel system affords 
a very good example of binary substitutional alloys, 
the variation of the Debye temperature of this alloy 
system in the whole concentration range has not been 
studied by the X-ray diffraction method. Recent 
advances in X-ray analysis techniques have made it 
possible to achieve a very high degree of accuracy in 
the measurement of X-ray intensities and hence of 
Debye temperatures. It is because of these considera- 

tions that the present work has been undertaken. A new 
expression of the Debye temperature of a disordered 
binary substitutional alloy has been derived taking 
into account the average force constants of the alloy 
and also on the basis of a model of lattice vibrations 
subject to noncentral forces. The predictions of this 
theory have also been compared with the present ex- 
perimental results. 

P r e v i o u s  theore t i ca l  s tudies  

The earliest and simplest attempt at finding an expres- 
sion for the Debye temperature of an alloy is based 
upon the Neumann-Kopp rule (mentioned in Swalin, 
1962) which assumes the validity of the additivity of 
the specific heats of the component metals in the alloy 
so that 

C An(rq) =pCao + qC~, 

where Co an(pq) is the specific heat of the alloy AB(pq) 
composed of the metals A and B in atomic concentra- 
tions p and q respectively. C¢ and C~ are the specific 
heats of the component metals A and B. At low tem- 

12zc4R 
peratures, since Co-  3 (T/O) a, where Tis the tem- 

perature in °K, we get 

1 p q 
- + - - -  (1) 3 OaB(pq~ O1 039 

where OAn(vq), OA and On are the Debye temperatures 
of the alloy AB(pq) and its component metals A and B 
respectively. Again at high temperatures, 

Co = 3 Nk [ 1 - xz x4 . • 

5-6 + 36o • ] 

A C 2 8 A  - 6 *  
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where N is the total number of atoms, k is the Boltz- 
mann constant and x--O/T. Retaining the first two 
terms we get 

2 _ 2 qO z " (2) OAB(pq) --pOA + 

Simersk~i (1963) has given an expression for OaB~po 
from the Neumann-Kopp rule which is 

oA.~p.> = o ~ .  o ~ .  (3) 

Again on the assumption of the independence of vibra- 
tions of the component atoms in the alloy Simersk~i 
(1963) has derived an expression for the Debye tem- 
perature of the alloy appropriate to X-ray measure- 
ment given by 

( m u m , )  '/2 
OAB(pq) = OAOn \pmA + qmn 

[ PZA+qZ" 
x \qZ,maOZ A 2t_-~AmBOZ fl (4) 

where mA, mB, Za, ZB are the masses and the atomic 
numbers of A and B atoms respectively. Simersk~ 
(1963) has compared her experimental results of silver- 
aluminum alloys with the predictions of the expressions 
(3) and (4) and has found that equation (4) gives a 
better but not a satisfactory agreement with the exper- 
imental results. 

Rezanov & Masharov (1962) have attacked the 
problem from a different and more sophisticated stand- 
point and, using the method of variations, obtained an 
expression of the specific heat of a binary disordered 
substitutional alloy. Equating this expression to the 
corresponding Debye expression of specific heat at 
low temperature in terms of Debye temperature they 
obtained 

ma ( 1 -  __O~_~'J OZaB,~,~, = 02 (1 + --~--p) [1-- 2p 02]  ] (5) 

1 1 1 
where - - - -  and Oo is the Debye temper- 

/z ma mB 
ature of an artificial crystal which can be evaluated by 
putting p = 1 in which case OABCp~) should be equal to 
0,4. At low concentration it can be seen from the equa- 
tion (5) that the Debye temperature varies linearly 
with concentration. This conclusion was obtained 
earlier experimentally by Rayne (1957, 1958) in 
copper-germanium and copper-zinc systems. 

Litzman (1963) has derived an expression for the 
Debye-Waller temperature factor of an alloy in terms 
of the reciprocal matrix. It is shown that under certain 
approximations one can separate the influence of the 
interatomic force constants from that of the masses 
of the alloy atoms. However, the reciprocal matrix 
cannot be easily obtained. Therefore, Litzman's theory 
is not easily amenable to numerical computations and 
hence not suitable for comparison with experiment. 

Syne6ek 0962) has calculated the effective mean- 
square amplitude of the thermal vibrations of atoms in 
binary substitutional metallic solid solution in terms 

of the order parameter and the nearest neighbour force 
constants. Recently, Valvoda & Syne6ek (1967) have 
extended the previous work and by considering that 
the root-mean-square amplitude of vibration of an 
atom is dependent upon the number of like and unlike 
atoms in its first coordination shell derived the fol- 
lowing expression of the Debye temperature of a 
binary substitutional alloy appropriate to X-ray dif- 
fraction measurement 

1 pma+ qmB [p_Z,~ qZ~ 
O~B(p~) -- pZa +qZB t mAOZa + mB--O~ 

Zn 
+ jpqo~(1-oq)(~naZ~ + ~ - 0 ~  )] (6) 

wherej is the total number of atoms in the first coordi- 
nation sphere of any atom, ~ the order parameter, a a 
parameter giving the change in vibrational state of the 
A (or B) atom if an arbitrary A atom in the first coordi- 
nation sphere of A (or B) atom is replaced by a B atom, 
related to the vibrational states of atoms in the pure 
components. 

Present theoretical considerations 

The Debye temperature O of a crystal is given by 
(James, 1950) 

K~/2 
O = C M 1/3Q-1/6 (7) 

h ( 9 N )  1/3 1 
where C= -k- ~ fli3(a-- ~ for O=Oo 

and C= hV3 ( 3 N )  1/3 1 
~ fqn(a )  

for O = OM. 0,) and OM are the Debye temperatures 
appropriate to specific heat and X-ray diffraction 
measurement respectively. K is the bulk modulus, M 
the atomic weight of the atom, 0 the density of the 
material, k the Boltzmann constant and N Avogadro's 
number, f(a) and if(a) are functions of the Poisson 
ratio of the material given by 

{ e + a  } 3/2 ~ 2 ( l + a ) ~  s/2 

f ( a )=  3 ( l - a )  +2 t3-0--2a)l 

1 + a  4(1 + a )  
i f ( a )=  3 ( l - a )  + 3(1-2a)"  

The bulk modulus K can be expressed in terms of the 
elastic constants as 

K -  cn q- 2C12 
3 " (8) 

The relation between the elastic constants and the 
force constants is given by De Launay (1956) by 
comparing the secular determinant of the Born-yon 
Karman lattice and that of the sound waves in a contin- 
uous medium in a central force model. It is, however, 
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not reasonable to neglect the angular forces for 
ordinary metals because the angular force constant be- 
tween nearest neighbour atoms is of the same order 
of magnitude as the central force constant between 
next nearest neighbour atoms even for the alkali metals 
in which the interaction between ion cores is weak. Niu 
& Shimizu (1967), considering a non-central force 
model in ,ahich the nearest neighbour central, next 
nearest neighbour central, and nearest neighbour 
angular forces are operative (the corresponding force 
constants being e~, ~2 and fl respectively), have deduced 
by a method similar to that of De Launay (1956) the 
relations between the force constants and the elastic 
constants. For face-centred cubic lattices they are given 
by 

oq + 3fl = ac44 

Oq + 40~ 2 -- f l =  a(cn - 6'44 ) 

2(cq- fl) =a(c~2 + c4,) (9) 

where a is the lattice constant. 
In case of binary alloys there are three different kinds 

of atomic force constants between different atoms, for 
example, et A, c~f n and e~n as the atomic force constants 
between nearest neighbour atoms. Here 0~ Aa and 0~I ~n 
are atomic force constants for pure A and B metals 
respectively. Atomic force constants for the AB alloy 
are given by the average of atomic force constants for 
the A-A,  B-B and A-B  pairs weighted by the prob- 
ability of appearance for these pairs. In the case where 
cubic A and B metals make only cubic alloys by 
alloying in the whole range of atomic concentration, 
Niu & Shimizu (1967) have derived expressions for 

400 
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Fig. 1. Variation of the Debye characteristic temperatures of 
Cu-Ni alloys with concentration. (a) Neumann-Kopp rule, 
high temperature (equation 2), (b) Rezanov & Masharov 
(1962) (equation 5), (c) Neumann-Kopp as given by Simerskfi 
(1963) (equation 3), (d) Simerskfi (1963) (equation 4), (e) 
Neumann-Kopp rule, low temperature (equation 1), (f) Pre- 
sent model (equation 15), (g) Valvoda & Syne~ek (1967) (equa- 

tion 6), ~ indicates experimental points. ± 

mean atomic force constants of the alloy AB(pq) 
composed of two metals A and B in the atomic propor- 
tions p and q respectively which are 

= e, -2cq )p + 2 ( ~ n - e f n ) p +  
0~ B(pq) "~- \I'o~AA2 AV eBB'2 - 2eAn'z )P2 + 2(0~za~ _ ~2ee)p _at_ 0~fB 

(10) 

Combining equations (8) and (9) the bulk modulus of 
an alloy can be written as 

4 
.Kan(pq) - 3aaBU,~) [0~ B(vq) + e2 ampq) -- 2flamv~)]. (1 1) 

Using equation (113) one can write 

4 
KAntvq)- 3aanU,.) [(cq an + ~fn _ "-~IONaB 7-''~aa~z ~-±"nB~2 

- 2c~ B_ 2fl aA _ 2fin n + 4flan)p 2 
+ 2(~OB-- ~f n +o:2n--~f n -  2fl aB + 2,8"n)p 
+ O~BB, + O~nB--2 2fl ~B] • (12) 

Now expressing force constants in terms of elastic 
constants by equation (9) one gets 

1 
KAI3(pq)-- 6aantpq) [{aa(2clal +4c~2) 

+ an(2cfl + 4cf i ) -  2aan(2cA~ + 4c14~)}p z 
+ 2 {aan(Zcxa~ + 4c~z B) -- an(2c~l + 4c~2) }p 

+ an(Zcft +4cfz)]. (13) 

Here c~, c~ etc. are the elastic constants of the pure A 
and B metals and c~t B etc. are the elastic constants of a 
fictitious metal whose atomic forces of interaction are 
~ n  etc. Similar notations are used for the lattice 
constant a. In terms of the bulk moduli of the pure 
metals and the fictitious metal referred above equation 
(13) can be written as 

1 
K, iB(p~)- a,4n(pq ) [(aaKA + anKB - 2aaBKAB)p2 

+ 2(aAnKAn -- anKn)p + a'Kn]. (14) 

Now combining (14) and (7) and assuming f (a)  and 
f ' (a)  do not change very much in the whole range of 
concentration 

2 __( Ma 0 2 +  Mn 0 2  

MAB(pq) MAB(pq) 
- - - -  O ~ B  

MB \ M~ 0 2 / p  + 02 (15) 
Man(vq) / MAB(pe) 

where 0.48cp~), OA and On are the Debye temperatures 
of the alloy AB(pq) and the component metals A and 
B of atomic weights MA and MB respectively, MAS(pq) = 
pM.4+ qM~, and OAB is the Debye temperature of a 
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fictitious lattice composed of atoms of atomic weight 
M,~8 and with force constants c~ B, cAB and flAB. 

Experimental techniques 

The samples studied were spectroscopically pure 
copper, nickel and some of their alloys (20, 30, 40, 50, 
60, 80 and 90% nickel in copper) and were supplied 
by Johnson Matthey & Co., Ltd. (London). 

The samples were ground to fine powder by filing 
and were made to pass through a fine sieve. These 
powdered samples were then annealed at about 
800°C for 12 hours in a vacuum annealing furnace to 
remove defects produced by cold work. Annealed 
powders were mixed with collodion and cakes were 
made on a standard sample holder of an X-ray dif- 
fractometer. 

The distribution of intensity in the X-ray diffraction 
lines was determined by the point counting method, 
with the help of a Norelco diffractometer provided with 
EIT counter tubes. Counts were taken at angular 
intervals of 0.01 o when a peak was scanned and 0.05 ° 
at the background. The angular settings were made 
manually and counts taken for 64 seconds at each 
setting. At the background and tail of the intensity 
distributions, where the counting rate was lower, the 
time of counting was increased so as to count at least 
10000 at each setting. Thus the statistical fluctuation 
error was kept at less than 1% level throughout the 
experiment. The counting rate was corrected for dead 
time as well as form factor. The dead time of the Geiger 
counter was determined as 200 /~sec, and since the 
supply was full-wave rectified (Klug & Alexander, 
1952), the form factor was taken as 1.7. 

Intergated intensities, i.e. the areas under the inten- 
sity distribution curves were determined with the help 
of a planimeter after a proper choice of the background 
intensities according to the method developed by 
Mitra & Misra (1966). The integrated intensities thus 
measured were corrected for temperature diffuse 
scattering by the method of Chipman & Paskin 
(1959). For alloys the intensities were further cor- 
rected for the diffuse scattering due to random distribu- 
tion of guest atoms in host sites (Cochran, 1956) and 
due to difference in sizes of guest and host atoms 
(Herbstein, Borie & Averbach, 1956). The theoretical 
values of the atomic scattering factors were taken from 
Cromer & Waber (1965) who computed these from 
relativistic self-consistent field wave functions which 
include Slater's approximate exchange correction. 
Atomic scattering factors were corrected for anom- 
alous dispersion. Debye temperatures were deter- 
mined by the usual method described by Mitra & 
Chattopadhyay (1970). 

Results and discussions 

Fig. 1 shows the results of calculation of Debye tem- 
peratures of alloys in terms of the experimentally 

determined Debye temperatures of the parent metals 
on the basis of equation (15) (the unknown parameter 
being determined from the experimentally determined 
values of Debye temperature of 30 % nickel in copper) 
as well as the Neuman-Kopp rule and the expressions 
due to SimerskEi (1963), Rezanov & Masharov (1962) 
and Valvoda & Syne6ek (1967). Fig. 1 also shows the 
experimentally determined Debye temperatures of the 
alloys. 

It is seen from Fig. 1 that equations (1), (2), (3), (4) 
and (5) give nearly linear variation of the Debye tem- 
perature with concentration. Equations (6) and (15) give 
a marked non-linear variation of O with concentration 
and both of them fit well with experimental results. 
Equation (15) has the obvious drawback that it con- 
tains one unknown parameter [MAB/MAB(pq)]O~B which 
has to be found from the known experimental value 
of the Debye temperature of the alloy at a particular 
concentration. Similarly equation (6) has also one un- 
known parameter, c~(1-el) which can be found in a 
similar way. 

In deriving equation (15) it has been assumed that 
the functions f(0.) and f'(0-) do not change very much 
with concentration. This is a valid assumption because 
most metals and alloys have a Poisson ratio nearly 
equal to 0.30. At least this is so in the cases of copper, 
nickel and their alloys. The use of equation (15) should 
be restricted to such systems. Herbstein (1961) has 
pointed out that one can improve the situation by 
making the substitution, 

E 
K -  

3(1 - 20.) ' 

where E is Young's modulus, before averaging over the 
longitudinal and transverse values of O. One obtains 

OM t11,/3 [ 3N ~ 1/3 El~2 
- k \--4-~-! M1/ZO1/efl(a) 

where 
3-50-  

f1(0.)= (15--260") (1 

and 

+~)]1/2 (16) 

[9N~1/3 E1/2 
On = h \-~--] MD3~i/6f2(o. ) 

where 

[ 3 - 50. ] 1/2 33/2(1 2o-)} f2(0.) = \ - -]-~--  ] {25/2(5- 3a) + - . 

(17) 

J~(a) andfz(0.) are very much insensitive functions of 0.. 
One can start with equations (16) and (17) instead of 
equation (7). But in that case one may not get a sim- 
plified relationship like equation (13). 

It is surprising that, in spite of the crude assump- 
tions, equation (1) is quite close to experimental results, 
whereas the variation obtained from the more sophis- 
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ticated theory of Rezanov & Masharov (1962) is the 
second-worst fit with the experimental results. Equa- 
tion (2) should have agreed better with experimental 
results than equation (1) since the former is valid at 
high temperature (room temperature) at which the 
experiment was performed, whereas actually it is the 
worst fit. The present formula [equation (15)] and that of 
Valvoda & Syne6ek [equation (6)] give equally good 
agreement with the experimental results and hence both 
of them are satisfactory additivity relations for the 
Debye temperature of a disordered binary substitu- 
tional alloy in terms of those of the component metals. 
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For accurate measurements of lattice parameters of materials where symmetry differs only slightly 
from cubic, difficulties arise in the determination of single lines belonging to the lattice of Dower symme- 
try because of the overlapping profiles of the pseudocubic lines. In this contribution the profiles of 
single lines of lower symmetry are approximated by the Cauchy curve and the profiles of the pseudo- 
cubic lines are considered as superpositioning of these curves. The resolution of the profiles and the 
determination of the lattice parameters are performed by means of a computer fitting least-squares 
program. The conditions for solving the problem are discussed and the method is then applied to a 
pseudocubic perovskite. 

I. Introduction 

The true crystal lattice of pseudocubic structures differs 
only slightly from the cubic one and the particular 
diffraction lines are grouped together around the 
'pseudocubic' positions. The line splitting is, therefore, 
often very small; and in the precise determination of 
lattice parameters, one encounters the problem of re- 
solving the positions of the single lines. For example, 
in perovskite-like solid solutions of PbTiyZrl_yOz for 
0 .10<y<0-40 ,  the true lattice is rhombohedral (a t=  

* GCMR Contribution No. 115. 
t On leave from the Institute of Physical Metallurgy, 

Czechoslovak Academy of Sciences, Brno, Zizkova 22, Czecho- 
slovakia. 

4" 13 •), but the deviation of the rhombohedral angle 
0c from 90 ° is only about 16'. 

In this paper, a method for resolving the overlapping 
pseudocubic profiles is presented; and the method is 
applied to precise lattice parameter determinations of 
PbTiyZrl_rO3 for y=0-10,  0.20, 0.30 and 0-38. 

H. Method of resolution of profiles 

The procedure for resolving overlapping lines is based 
on the premise that a single diffraction line can be 
approximated by a particular analytic function and 
that the profile of overlapping lines can be expressed 
by the superposition of these single functions. 

Various analytic curves for the approximation of the 
profile of a single line can be used according to the prob- 


